High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system.

نویسندگان

  • Kathyayini Sivasubramanian
  • Manojit Pramanik
چکیده

Photoacoustic tomography, a hybrid imaging modality combining optical and ultrasound imaging, is gaining attention in the field of medical imaging. Typically, a Q-switched Nd:YAG laser is used to excite the tissue and generate photoacoustic signals. But, such photoacoustic imaging systems are difficult to translate into clinical applications owing to their high cost, bulky size often requiring an optical table to house such lasers. Moreover, the low pulse repetition rate of few tens of hertz prevents them from being used in high frame rate photoacoustic imaging. In this work, we have demonstrated up to 7000 Hz photoacoustic imaging (B-mode) and measured the flow rate of a fast moving object. We used a ~140 nanosecond pulsed laser diode as an excitation source and a clinical ultrasound imaging system to capture and display the photoacoustic images. The excitation laser is ~803 nm in wavelength with ~1.4 mJ energy per pulse. So far, the reported 2-dimensional photoacoustic B-scan imaging is only a few tens of frames per second using a clinical ultrasound system. Therefore, this is the first report on 2-dimensional photoacoustic B-scan imaging with 7000 frames per second. We have demonstrated phantom imaging to view and measure the flow rate of ink solution inside a tube. This fast photoacoustic imaging can be useful for various clinical applications including cardiac related problems, where the blood flow rate is quite high, or other dynamic studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer.

We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer....

متن کامل

Real-time in vivo photoacoustic and ultrasound imaging.

A real-time photoacoustic imaging system is designed and built. This system is based on a commercially available ultrasound imaging system. It can achieve a frame rate of 8 frames/sec. Vasculature in the hand of a human volunteer is imaged, and the resulting photoacoustic image is combined with the ultrasound image. The real-time photo acoustic imaging system with a hybrid ultrasound probe is d...

متن کامل

Realtime photoacoustic microscopy of murine cardiovascular dynamics.

Non-invasive visualization of cardiovascular dynamics in small animals is challenging due to their rapid heart-rates. We present a realtime photoacoustic imaging system consisting of a 30-MHz ultrasound array transducer, receive electronics, a high-repetition-rate laser, and a multicore-computer, and demonstrate its ability to image optically-absorbing structures of the beating hearts of young ...

متن کامل

Video-rate functional photoacoustic microscopy at depths.

We report the development of functional photoacoustic microscopy capable of video-rate high-resolution in vivo imaging in deep tissue. A lightweight photoacoustic probe is made of a single-element broadband ultrasound transducer, a compact photoacoustic beam combiner, and a bright-field light delivery system. Focused broadband ultrasound detection provides a 44-μm lateral resolution and a 28-μm...

متن کامل

Handheld photoacoustic probe to detect both melanoma depth and volume at high speed in vivo.

We applied a linear-array-based photoacoustic probe to detect melanin-containing melanoma tumor depth and volume in nude mice in vivo. This system can image melanomas at five frames per second (fps), which is much faster than our previous handheld single transducer system (0.1 fps). We first theoretically show that, in addition to the higher frame rate, almost the entire boundary of the melanom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical optics express

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2016